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Curved graphite and its mathematical transformations 
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Mathematical transformations for graphite with positive, negative and zero Gaussian cur- 
vatures are presented. When the Gaussian curvature K is zero, we analyse a bending transfor- 
mation from a planar sheet into a cone. The Bonnet, the Goursat and a mixed transformation 
are studied for graphitic structures with the same topologies as triply periodic minimal surfaces 
(K < 0). We have found that using the Kenmotsu equations for surfaces of constant mean cur- 
vature it is possible to invert spherical and cylindrical graphite. A bending transformation for 
surfaces of revolution is also studied; during this transformation the helical arrangement of 
cylinders changes. All these transformations can give an insight into kinematic processes of 
curved graphite and into new shapes. 

1. I n t r o d u c t i o n  

The discovery of  C60 has opened the field of  structures with different curvatures  
[17,18,20]. In C60 and other Fullerenes the Gaussian curvature K (the product  o f  
the two principal curvatures, K - klk2) is positive, in cylindrical and ordinary gra- 
phite K is zero. Structures in which K < 0 have been proposed  by  M a c k a y  and 
Terrones [24], Lenosky et al. [21], Vanderbilt  and Tersoff  [36] and O'Keeffe  et al. 
[26]. In this paper  we study some mathematical  t ransformations applied to graphi- 
tic sheets involving cases where K = 0, K > 0 and K < 0, so we are not  just  restricted 
to a single planar layer of  graphite. For  surfaces of  constant  mean  curvature  like 
the sphere and the cylinder we have found an interesting t ransformat ion which 
inverts these surfaces; meaning to put  the inside of  the surface outside and vice 
versa. This t ransformat ion might give an insight in real changes like, for example, 
in the flipping of  corannulene C20H10 [29,3,5]. Regarding the plane, a t ransforma-  
tion into conical graphite is studied. For  the case K <  0, we analyse the Bonnet  
t ransformat ion,  the Goursa t  t ransformation and a mixture of  these two. Finally, 
t ransformat ions  for helicoidal tubules and spheres are discussed. 
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2. Transformation o f  ordinary graphite into graphitic cones: K = 0 

Ordinary graphite is made of planar sheets separated by certain distance, so the 
Gaussian curvature K is zero. If these sheets are rolled up, then cylinders can be 
obtained; here K is also zero, although one principal curvature has a constant 
value, therefore, the mean curvature (H = (kl + k2)/2) is also constant. Ijima [12] 
has obtained tubes of graphite which resemble bent graphite sheets. A transforma- 
tion of a plane into a cylinder has been studied by mathematicians since long time 
ago and now can have application in the study of graphitic structures. If we take a 
sheet of paper and bend it to get a cylinder, the distance between two points on the 
sheet of paper does not change by the process; in fact, this transformation is locally 
isometric [4,30,31]. Another interesting transformation of a plane consists in chan- 
ging a planar surface into a cone. This transformation is isometric and can be 
expressed as follows: 

x = r sin a cos [ s i -~[  ' 
t .  d rsinos  [O] 

z = rcos , (1)  

where 0<c~<7t/2 and 0~<0~<2nsins. When c~ = n/2 a plane is obtained, but 
when c~ decreases, conical surfaces are generated (see figs. 1 and 2). During this 
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c d 

e f d$ 
Fig.  1. T r a n s f o r m a t i o n  o f  a p l a n a r  s h e e t  i n t o  a c o n e .  (a) a = ~ / 2 .  (b) a = ~ / 2 . 5 .  (c) a = ~ / 3 . 5 .  (d) 

c~ = ~ / 4 . 5 .  (e) c~ = n / 5 . 5 .  (f) t~ = ~/6. 
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Fig. 2. Different kinds of graphite nets with zero Gaussian curvature (K = 0). (a) Ordinary graphite 
(a plane). (b) Cylindrical graphite. (c) Intermediate state of a transformation for conical graphite. 
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transformation the metric and the Gaussian curvature remain unchanged, except 
at the tip of the cone, and can bewritten as 

Or Or 
~-1~ gll -Or  Or 

Or Or 
g12 Or O0 O, 

Or Or_ p ,  
g22 = O0 O0 

K = k l k 2  = ( 0 ) ( ~ - - )  ~--0, 

cot 
H -  

2r ' 

where r = (x, y, z), kl and k2 are the principal curvatures, K is the Gaussian curva- 
ture and H is the mean curvature. Note that there is a singular point when a --- 0. 

Iijima [13] has also found graphitic cones which are connected to cylinders by a 
region of negative Gaussian curvature. 

3. Transformat ions  for K < 0 

Negatively curved graphite with topologies similar to triply periodic minimal sur- 
faces (TPMS) is obtained by the introduction of rings with more than six atoms 
[21,24,26, 33,36]. If octagonal rings are used, the exact D, G and P TPM S can be deco- 
rated with graphite, so the mean curvature is zero at every point [24,25,28,33,34]. 
The D, G and P TPMS are related by a transformation discovered by Bonnet last 
century [2,10,11,27]. The Bonnet transformation preserves the metric, the Gaussian 
and the mean curvatures, so the surface is just bent without stretching; the classical 
example of this is the change of a catenoid into a helicoid. For decorating exact 
TPMS we can use the Weierstrass representation which ensures that the surface 
obtained is a minimal surface [32-34,37]. The coordinates (x,y,z) in real space 
of a minimal surface and its Bonnet associated surfaces are given by 

x = Re [ei~ f0~° 

y = Re[eiaf0 ~ 

z = Re [eia f0~° 

(1 - w2)R(w) dw], 

i(1 + J)R(w) dw], 

2wR(w) dw] , (2) 

where R(w) is the Weierstrass function which characterizes each surface. For the 
D or F surface R(w) = u/x/w 8 - 14w 4 + 1, the values of w0 are the points inside the 
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region outlined by the intersection of four circles of radius x/2 and centres at 
(+l /v /2 ,  + l /x /2)  and u is a normalization constant, which for C-C in graphite is 
7.146/k. Having the coordinates of a patch in real space, symmetry operations can 
be used to get an extended part of the surface. 

For different values of/3, different patches with zero mean curvature can be pro- 
duced. If/3 = 0 a D patch is obtained, when/3 = 38.0147 ° we get a G patch and 
with/3 = n/2 the P patch is generated. All other values of/3 give patches which can- 
not be put together without having self intersections and gaps, therefore, just for 
the three cases mentioned above TPMS can be built. It is interesting to note that the 
trajectory of points during the Bonnet transformation follow elliptical paths [11]. 
Figure 3 shows portions of the D, G and P surfaces decorated with graphite. 

Another transformation which can be applied to minimal surfaces is the 
Goursat transformation which stretches and bends the surface [1,7,8]. The coordi- 
nates ofa  Goursat transformed surface are given by 

Fig. 3 (continued on next page). 
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b 

Fig. 3. Negatively curved graphite with octagonal rings and hexagons. (a) Cubic cell of  the D sur- 
face. (b) Cubic cell of the G surface. (c) Two cubic cells of the P surface. 
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/0 ( x G = R e  R(w) ka -- ~G dw , 

YG = Re fo°:iR(w) (ka +-~-~) dw, 

= R e  (3 )  

as the value of  kc  increases, the surface gets stretched and flatter. Applying the 
Goursat  t ransformation to a patch decorated with graphite increases the distance 
among the atoms as the patch is stretched and the atoms get free. Therefore, this 
t ransformation is not  suitable for structures in which atoms have to stay within 
a certain range (bond distance). However, it is possible to combine the Bonnet  
and Goursat  transformations and stretch the surface to a small level keeping the 
structure [33,35]. For this mixed transformation we define R(w) t = R(w)e i3 and kG 
= 2 - cos3  orkG = 2 -- s in3 in the  eq. (3). 

4. T r a n s f o r m a t i o n s  for  K t> 0 and  H = C: Spheres  and  Cyl inders  

Kenmotsu  [15] and Gacksatter [6] have found equations analogous to the Weier- 
strass equations, but for surfaces with constant mean curvature H. The sphere 
and the cylinder belong to this kind of surfaces. By introducing a factor e i# in the 
Kenmotsu  equations we have found a Bonnet-like t ransformation in which stretch- 
ing and bending take place; according to this, the Kenmotsu  equations can be writ- 
ten as [33] 

x = - R e  ifl (1 - G 2) H(1 + IGI2) 2 ' 

y = - R e  e i# i(1 + G ) H ( 1 T ~ I 2 )  2 d , 

z = _ R e [ e i ~ f  4GG~ dw 1 
H(1 + 1612) 2 ' (4)  

where G~ = ½[OG*/Ou- iOG*/Ov],H is the mean curvature and the asterisk 
denotes the conjugate of  a complex variable (w = u + iv, w* = u - iv). For  a unit  
sphere G = w*/2 and H = 1. For a unit circular cylinder G = - ( c o s u  + is inu) ,  
w = u + iv and H = 1. An interesting feature of this t ransformation is that  the 
sphere and the cylinder can be inverted this means to put  the inside out  and the out- 
side inside (see figs. 4 and 5). 

As in the Weierstrass representation, the Kenmotsu  equations involve a series 
of  mappings for getting the coordinates in real space. First we go from the complex 
plane to the Gauss map by stereographic projection and then, f rom the Gauss 
map  to the surface. The Gauss map or spherical projection consists in the directions 
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Fig. 4. Inversion of  a sphere using Kenmotsu  equations for surfaces of  constant  mean curvature.  
( a ) / 3 =  O. (b)13 = 10°. (c)~ = 20°. (d)fl  = 60°. (e) fl = 175°.(f)fl  = 180 °. 

of the normals to the surface mapped onto a unit sphere [4,30,31]. Summarizing, 
the series of mappings goes as follows: 

Complex plane ~ Stereographic projection ~ Gauss map ~ Surface (x, y, z). 

Going from the Gauss map to the complex plane there is just one point that can- 
not be mapped and this is the north pole. However, since we are dealing with a dis- 
crete array of points (atoms) and not with a continuum, this difficulty can be 
avoided by not choosing an orientation in which one point coincides with the 
north pole. 

In order to perform the transformation we have to start from the complex 
plane, so the Gauss map for example, of C60 or corannulene, has to be projected 
onto the complex plane to get the coordinates u + iv (see fig. 6). The transformation 
operating on a sphere and a cylinder are shown in figs. 4 and 5. 

A sphere can be decorated with C60 or approximate form of other Fullerenes, 
and also a cylinder can be decorated with graphite to get bucky tubes, therefore, 
since these structures have constant H, the transformation mentioned above can be 
carried out. During intermediate states of the transformation stretching takes 
place, so the structure is unstable, but when/3 = 0 and/3 = g structures with the 
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Fig.  5. I nve r s ion  o f  a cyl inder  using K e n m o t s u  equa t ions  for  surfaces  o f  cons t an t  m e a n  curva tu re .  
(a) fl = 0. (b) fl = 10 °. (c) fl = 20 °. (d)/3 = 35 °. (e) fl = 90 °. (f) fl = 120 °. (g)/3 = 175 °. 0a)/3 = 180 °. 

same bond distances and same angular distributions are generated, although, the 
structures are inverted. It has been found that corannulene C20H10 invertes itself 
about  2000 times a second [3,29]. A intermediate state which is completely fiat has 
been proposed, here, we offer another possibility by the t ransformation on sur- 
faces of constant mean curvature. 
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a 

b 

Fig. 6. Stereographic projection on the complex plane: (a) Buckminster-fullerene C6o. (b) 
Corannulene C2oH10. 

5. Transformation for surfaces o f  revolution 

The sphere and the cylinder can be generated by rotating a circular arc and a 
straight line, respectively, about an axis. Surfaces obtained in this way are called 
surfaces of revolution; the catenoid, and the cone belong to this family of surfaces. 
An important result obtained by Boer [16] says that any surface of revolution can 
be bent. Bearing in mind that spheres and cylinders can be decorated with graphite, 
we should be able to follow a bending transformation for these structures. The 
transformation that we are considering consists in rotating and displacing the sur- 
face, so we get helicoidal surfaces. For a sphere the transformation takes the follow- 
ing form: 
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x = p c o s O s i n a ,  

y = p cos 8 cos a ,  

z = p sin 0 + k a ,  (5) 

where p is the radius of the semicircle which corresponds to the radius of  the sphere 
when k = 0, 0 is the angle which generates the semicircle, a is the angle about  which 
the semicircle is rotated and k is a parameter related to the pitch of the helix. We 
have chosen a sphere of unit radius for different values of k. When k = 0 a perfect 
sphere is obtained, as k increases, the surface starts to bend in a helical way (see 
fig. 7). This transformation under the sphere it is not  isometric, so the Gaussian 
curvature changes. The Gaussian curvature can be written as 

K = [ - 3 k  2 + 3p 2 + 4k 2 cos(20) + 4p 2 cos(20) - k 2 cos(40) + p2 cos(40)] 

/[2(k 2 + p2 _ k 2 cos(20) + p2 cos(20))2] ; (6) 

as k increases the Gaussian curvature becomes negative close to the borders, how- 
ever, for small values o fk  most of the points have positive Gaussian curvature. 

In the case of  the cylinder the transformation takes the form 

x = p s in0 ,  

y = pcos 0, 

z = v + k a ,  (7) 

where p is the radius of the cylinder, v is a parameter which controls the length of  

c d 

Fig. 7. Bending t ransformation for a surface of  revolution: the sphere. (a) k = 0. Co) k --- 0.05. (c) 
k = 0.1. (d)k = 0.2. 
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the cylinder, a is the rotation angle around the axis of the cylinder and k is a free 
parameter which involves the pitch of the helix. 

For k -- 0, a perfect cylinder is obtained, as k varies different helicoidal tubules 
with different degrees of helicity are generated (see fig. 8). Hamada et al. [9] have 
predicted that the conductivity of cylindrical graphite depends on the diameter of 
the tubes and on the degree of helical arrangement. According to this, the transfor- 
mation changes the conductivity of the cylinders. Another important factor here 
is that the Gaussian curvature remains zero. 

Until now helicoidal graphite has not been reported, but it also seems to have 
an interesting shape. If we look carefully at the Bonnet and the transformations 
mentioned above, we found that helicoidal states are present in great part of the 
transformations; further, parallel surfaces can be generated, so several layers might 
be obtained and transformed [33]. 

6. Conc lus ion  

Mathematical transformations for the three cases of Gaussian curvatures 
K > 0, K = 0 and K < 0 have been studied considering graphite sheets. Among the 
different shapes of curved graphite we have been able to generate cones, cylinders, 

a b 

c d 

Fig. 8. Bending t ransformat ion for a surface of  revolution: The cylinder. (a) k = 0. (b) k = 0.05. 
(c) k = 0.1. (d) k = 0.2. 
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Fullerenes, helicoids and triply periodic minimal surfaces. For surfaces with con- 
stant mean curvature a new transformation which uses Kenmotsu equations is 
introduced. This transformation inverts the sphere and the cylinder and gives 
another possibility for the flipping of corannulene. The Bonnet and Goursat trans- 
formations are also considered; the Goursat transformation is not suitable for 
structures since its stretching produces atoms to be disconnected. However, a 
mixed transformation with Bonnet and Goursat terms can stretch and bend the sur- 
face to a small degree, so atomic distances are not large, preserving, therefore, the 
structure. Finally, a transformation for surfaces of revolution is studied; here we 
find that the transformation when operating on cylinders preserves the Gaussian 
curvature and cylinders with different degrees of helical arrangement can be 
obtained. 
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